Sequences,;

Definition; let f;N->R be a function and let

f(n)=a, .Then al,a2,a3_._ . Is called the sequences in R
determined by the function f and is denoted by (a,). (a,)

is called the nth term of the sequence
The range of the function f. which is subset

of R is called the range of the sequences

Examples:
1.The function fN->R given by f(n)=n

determines the sequences 1,2,3,.....

2 The function N>R given by
f(n)=n“determines the sequence 1,49 ..

3. The function f:N->R given by f(n)=(—1)"

determines the sequence -1,1.-1,1.... Thus the term of
the sequence need not the distinct.The range of the

sequence is (-1,1) Thus the we get therange of the
sequence may be finite or infinite.

4 The sequence((—1)"T*isgiven by 1,-1,1 -
1 . The range of this sequence is also (1,-1) However
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weknow that the sequence (—1)™ and(—1)™*! are

different.The first sequence startswith -1 and the second

sequence starts with 1.

5.The constant function ;N>R given by
f(n)=1 determines the sequences 1,11, Such the
sequence is called is constant sequences.

6. The function f;N>R given by f(n)=§n if nis even

¥%(1-n)if nis odd

Determiningthe sequence 0,1,-1,2 -
2..._.n,-n.The range of the sequence is z.

7. The function f,N>R given by f(n n/n+1.
Determines the sequence %,2/3,3/4,__ n/n+l1.

8. The function f;N->R given by f(n)=1/n
determines the sequence 1,1/2.1/3, .. .

9. The function f;N—>R given by f(n)=2n+3
determines the sequence 57,9

e m s e o

10.let x€R .The function The function N>R given

by f(n)=x""" determines the geometric sequences
1xx® . x™
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11.The sequences(-n) is given by -1,-2,-3, . __-n.The
range of the this sequence is the set of the all negative
integers.

12 A sequence can also be described by specifying
the first few terms and starting a rule of determining an
is a term of the previous term of the sequence_For
example let a,=1,a,=1 and a,=a, +a,_, Thus obtain
the 1,1,2.3.5,8 .. Thus the sequence is called FIbonacis

sequence

13.Leta1=\/—i and a,H_l:JZ + a,. This defines the
sequences V2,v 2 + V2

Bounded sequences;

Definition, A sequence( a,) is said to be
bounded above if there exists a real number k such that
an,<k foralln € N Then k is called upper bound of the

sequences.

A sequences ( a,) is said to be

bounded below ifthere exists a real number k such that
a, 2k for all n. The k is called a lower bounded of the

sequence.

4/6
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A sequence( a,) is said to be bounded
sequences if it is both bouned above and below.

Note;

A sequences ( a,) is bounded ifthere exists a real
number k20 such that ( a, )<k for all n

The least upper bound and greatest lower bound of

sequences can be difined as in 1.4

Example;

1.Consider the sequences 1,1/2,1/3 _.1/n. Here
lu.band0is the g.| b It is bounded sequences

2 The sequence 1,2,3,..n is bounded below and not
bounded above .1 is the glb of the sequence

3 The sequence -1,-2,-3,....-n is bounded above but
not bounded below -1 is the lub of the sequences

41-11-1_ Isthe bounded sequences 1 is the lub
and -1 is the glb of the sequences
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Monotonic sequences

In this section we intreducs an important class of
sequences called monotonic sequences in which the
terms are either continuously increasing or
continiously decreasing.

Definition:

A sequences (an) is said to be
monotonic increasing if an<an+1 for all n (a,) is said
to be monotonic decreasing if an>an+1 for all n (an)is
said to be serictly monotonic increasing if ap<an+1 for
all n and strictly monotonic decreasing if ap>ans+1 for
all n (an) is said to be monotonic if it is either
monotonic increasing or monotonic decreasing.

Examples:

1)1,2,2333444A....... IS @ monotonic
Increasing sequence

123N s n,..... is a strictly monotonic
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increasing sequence

3)1,1/2,1/3,1/4,....1/n,......is @ strictly
monotonic decreasing sequence

4)The sequence(as)given 1,-1,1....is neither
monotonic increasing nor decreasing.Hence (an) is

not a monotonic sequence.

5) (2n-7/3n+2) is a monotonic incresing

sequence
Proof:
an-ane1=2n-7/3n+2-2(n+1)-
7/3(n+1)+2=-25/(3n+2)(3n+5)
dn<dn+1
Hence the sequence is monotonic
increasing.

6)Consider the sequence (a,)where
(an)=1+1/11+1/21+....+#1/n! clearly (a,) is 2
monotonic increasing sequence
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Note:

A monotonic increasing
sequence (an) is bounded below and a;
is theg.l.b of the sequence.A monotonic

decreasing sequence (an) is bounded
above and a;i is the l.u.b of the sequence.

Solved problems:

Problem 1: Show that if (a,) is a
monotonic sequence then(a;+ax+....an/n)
is also a monotonic sequence.

Solution:

Let (an) be @ monotonic
increasing sequence

d 158 25_3 35. . .53 n':_: .......
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=n(an+1-an)/n(n+1)

>0

bn+12bn
b, is monotonic increasing.

The proof is similon if (an)is monotonic
decreasing.

Definition:

A sequence (a,) is said to coverge
to a number | if given there exists a
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positive integer m such that for all n>m
we say that | is the limit of the sequence
and we write lim a,=l or (a,)=l

Note:1

(a,) | if given there exists a natural
number m such that for all n>m all but a finite
number of terms of the sequence liv within the !\
interval \

Note:2

The above definition does not
give any method of finding the limit of a
sequence in many cases by opsering the

sequence carefully we can guess
whether the limit exists or not and also

the value of the limit.
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Theorem3.1:

A sequence cannot converge to two
different limits.

Proof:

Let (a,) be a convergent sequence.

If passible let |; and |; be two
distincl limits of (an)

Since(an) | ,there exists a natural

number n; search that (a,-1)<1/2 for all
n>nNi

Since (an) 2, there exists a natural n;
such that

(an-12)<1/2 for all ni>n;
Let m=max{ni,nz}

Then (l1-12)=(l1-am+am-l2)
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<(am-l1)+(am-12)

clearly this is possible if and only if 1;-1;=0.
Hencel;-l;,
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We now proceed to classily sequences which are not convergent as

follows.
1. Sequences diverging to oo
2.Sequences diverging to —o
3.Finetely oscillating sequences.
4d.nfinetely OSClllating sequences.
Difination

A sequence (a ) issaid todiverge to« if given any real number k> 0,
there exists mEN such that an>k forall nzm. Insymbols we write (an)

>0 Or limn - oan=wo
Note, (an] >0 or iff given any real number k>>0 there exists m€ N
such that a €(k,») forall nz2 m
Examples.
1.(n)->co
Proof. Let k > 0 be any given real number.

Choose m to be any natural number such that
m> K

Then n> k for all n2m
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Proof. Let k> 0 be any given real number.

Choose m to be any natural number such that
m>VK.

Then n?> k for all n>2m

(n=)->co,

Proof. Let k>0 be any given real number.
Then 2">k nlog 2 >log k.
n> (log k)\log 2

Hence if we choose m to be any natural number such
thatm> (log k)/ log2, then 2"> Kk for all n>m.

(2") ->o0

Definition. A sequence (a") is said to diverge tos-«
if given any real number k<0 there exists

mé€N such that a,<k for all n>m. Insymbols we write
limn - wan= -,

Note. (a,) -> - Iff given any real number k<0, there
exists m€ n such that a, €( -, k) for all n>m.

A sequence (a,) is said to be divergent if
either (a,) -> @ or (a,) -> -o.

Theorem 3.3 (a,) -> « iff (-a,)-> -,
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Let k<0 be any given real number . Since
(ap)-> o there exists

m€ N such that a,> -Kfor alln > m.
-ap< Kfor alln >m.
(-ap) -> -,
Similarly we can prove thatif (-a,) -> - then (a,)

-2 00,

Examples. The sequences (-n), (-n*) and (-2")
diverge to -,

Theorem 34 If (a,) - «© and a, 0 forall n€ N
then (1/a,) -> 0.

Proof . Let € 0 be given. Since (a,)->«, there exists
m€ N Such that a,>1/€

For alln>m.
1/a, <€ for all n 2m.
'1/a,| < for allnz m.

(1/ay) -> 0.

Scanned by TapScanner



Scanned by TapScanner



Scanned by TapScanner



Scanned by TapScanner



Scanned by TapScanner



Scanned by TapScanner



Scanned by TapScanner



......

-"n_" |"| ™ flu.'u ﬁ||ﬂ\| il “h ‘ { I# mlh il MW Mhﬁ," -r-=;rltﬂ"**hﬂ" ::;.;"5' " e

'|"I _

mF ||, 1; l' ﬂ lmﬂh ,Mﬂ, "OUIN | . |I|I h Hldm wHﬂl i . i
o b " o Moddllatlngsequenmwmdﬂsunbwndedlsmldto .

be infinitely oscillating.
Example:

1.consider the sequence ((—1)"). Since this sequence s bounded & cannot
divermge o = ar -= (by theorem 16 and 3 7). Also this sequence s not
onvergent (by example 5 of 34) Hence ((—1)").is a finiely oscllating
sequence.
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THE ALGEBRA LIMITS

In this section we prove a few simple theorems for sequences which are very useful in
calculating

Limits of sequences.

Theorem 3.8
Il (an) -a and (by) -b then (an+bs) -a+b

Proof.
Let E>O be given.
Now |a,*b,ab |+~ |a,a+b,d|
S 108 | ¥ 10D | ssnsaisecnsmisosmont (1
Since | a,| ~a there exists a natural number n; such that,
lana |<VE forall NN ccvinimmesmmsnsennil )

Since |by | ~ b, there exists a natural number n; such that,
|Dp-D |<VAE OTrall NEN3 cccniniimminniuimininm (3)
Let m=max { nyn; )
Then |ap*bn-a-b | <Vaf + € = Eforall nzm
(by 1,Zand 3)

s ay*hy ) - a+b

Note: Similarly we can prove that
(@nbn ) -~ a-b

Theorem 3.9

If(a,) - a and k CR then (Ka,) - ka

Proof

Ifk=0 (ka,) istheconstant sequence 0,0,0... andhence the result istrivial
Now let k=0

Then | ka Ka | = | K| [8p8 | ccemmmiccrmrmoniin (1)

Let £>0 be gwen.
Since (a,) -a, there exists m €N such that
laca | <€/1k| for all N2M ..cccimimisiinemsrionenl )

- | kay-ka | <€ forall nam (by 1 and 2)
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Theorem 3.10
if (a.)=>a and (b.)>b then (a, b.)=>ab .

Proof:

Let E<O be given
Now, |a.b.| = |asbs—aub+a.b-ab |
< |a.b.-a.b | + |a.b-ab |
|aa] [baD]|*Ib] | Ba=a ] i (1)
Also . since (a.) 22, (a.) is a bounded sequence. ( bytheorem 3.2)
- There exists a real number k>0 such that |a,|sK for all n ... (2)

Using (1) and (2) we get,

|asbe—ab |Sk by -D |+ |b] |Jan=3 | i 3)
Now since (a.)=>a there exists a natural number n; such that
lan—a |« 1_:—.| fOr 3l NEM,  cicnsicinmmiinsmnssssnnssssmonsins{ ]

Since (b.)= b, there exists a natural number n; such that
|b.~b |< fi' BOF B BRIy coccmcviormesionsnsssonitssinss A5)

Let m= max {n; ,n; ). Then |a, b, -ab | < h[i}*ﬁ 1] [ﬁ;} =E for all n2m.

(by 3.4 and 5)
Hence (a, b. )= ab.
Theorem 3.11

if (a, )>a and a,=0 for all n and a=0, then {i}-}f.

Proof:
= |
Let 50 be given. We have |—-—| = |==| =

Und Cr

I —— (1)

Now, a=0. Hence |a|>0. Since (a.)=a there exists nye N such that |a.—a|<¥|a| for all n2n,

Hence |a.] >% |a] for all N2Ny i 2)
Using (1) and (2) we get, |ﬂi—f| < |:|= la, — a| for all n2ny .....o..(3)
Now since (a.)=>a there exists n; e N such that |a.-a|<%E|a|’ for all n2n; .................[4)
Let m= { nl'l—l-—il-:"'”"”—r for alln 2 m {by3 and 4 )
el on L T i =
1 1
[:} -
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Corollary;
Let (a.)=a and (b.)=2b when b.#0 for all n and b=0.

b, b

Proof:
1 1
1:] =+ (by theorem 3.11 )
E?-} -f (by theorem 3.10)
Note.
Even if Illm a, and Pﬂ_b. do not exist, P__nﬁn.-t-b.) and .hﬂ:_:— may exist.

For example let a, = ((—1)") and b.=( (-1)*"). Oearlylim a, and lim b, do not exists.

I -~ R =

Now (a,+ b, ) is the constant sequence 0,00..... Eachof (a. b.) and (a./b.) is the
constant sequence -1.-1-1.... Hence (a.+b.)=20. (a.b.)= -1 and (a. /D)= -1.
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Rali e - i
1, .-': ! :"h
I!li,l-ﬂ!'l!{h-n'*n et
Proof :

et €e>0 be ﬂi"’ﬂl‘l
Now ja,] - a]] < ag = @] ~==—nes=(1)

Since (a,)-»a, there exists meN

Such that |ay| - Jaj < € foralln 2 m.

Hence from (1) we get ||ag| - Ja)l < € foralln=m
Hence (Jaqg]) — |a

Theorem 3. Ia

If (a)>aanda,>0forall nthena 0

Proof:

Suppose a <0, then-a> 0 |
-
Choose € suchthat0< e <-asothata+ € <0

Now. since (a,) - a, there exist m € N such tha
.a-e<a,<a+eforalln>m.
Now , since a + € <0, we have a, <0

For all n > m which is a contradiction since a, > f

&
.I.-

b

Note: -
R

| Y
5 i |J'
i .

In the above theorem if a, > 0 for all n, we ¢an
consider the sequence {-:;). Here i >0 for all n and

o
II
' g
... |
"y ,,':": . E
e

-

If (ap)—>a, (by) —> band a, < b, for all n, t

Theorem 3.14

'l.'l.
A
i

¥ i "l E

¥ I|_l J s
=g 5 || . -
'na

_f-

Proof :

Since a, € b, we have b, -a, 2 0foralln

o

Also (bn " ﬂn] —>b-8 _-:i
Iy i 20 | o
. ﬂs h '.
>,
-
b NS
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Dheorem 3,18

Let o 50 be given .

Smcee (ag) » Lthereexistsny e N

Suchthatl - € <a, <14 e foralln2n,. X}

Similarly, there exists ny ¢ N, . *

Suchthatl- e <b, <1+ € forallnzm -r;_..'_l.

Letm = max {ng,ny )

l-€e<a, Scpshy<l+ e foralln2m

l-e <cy<l+eforallnzm

[cp-1l<e forallnzm 28

So(Cp) = | oo
Theorem 3.16 L

If (a,) — aand a, > 0 for all n and a # 0 then (Van) - va

Since a,20foralln.az0

Now |(Van) ~ va| = |zl
Since, (a,) > a # 0
We obtain a, > > a for all n 2 ny
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Let c>0.let k>0 be any given real number.

i [ # AN 4
P e aan

wﬂ_ @, there exists me N such that 3n>k/ C
or all nzm.
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& ca, <k for all n2m. (since c<0)

(ca,)= —o.

-.F.-|  — =

I. ‘ '- I :
. N - L k. 1
Ny e e Y TR 0o URT
1 0 - - = g A4 "\ ol S g
— @ and (b,) is bounded then h. )= o,
N Tl :t"'l." o i e _'--|.-'..'I-_- d II"'.- -'-.'. I - - -.:. 4 S | . 1 w0 "l' --q-ill .- A"t
R oY ]
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Solved Problems

Problem:1

3In‘+2n+5

Show that lim

8

n—oo Elﬂ2+f-'.l-ﬂ+'? 2
Solution:
3n+2n+5 f3+—+ 2]
n === =
en“+4n+7 'n%ﬁ+—+ |
; R
a, = ——1-
" bb =y
nn
1
Now, 11m(3+ + ) 3+ 2lim - +511m—-5
1 — 00 n—o0 N n—oo N
=3+0+0
lim (3 + + =3
N —00
Similarly
lim (6+ + ) =6 + 4 lim = + 7 lim — -
N — 00 n—oo n—oo n
= 6+0+0
lim (6+ TR ~)=6
1n—00 n
. 2. 5
v lima, = lim (3—+;':HI— e Hn )
L — - 4_ ?
n—co n—o0o (ﬁ+--+-—-;-} Jl__ﬂgﬂ(ﬁﬂ;d-ﬁ-f}
3 1
lima, ==-==
n—oo E
s 3n+2n+5 _ 1
n—coo 6n?+4n+7 2

Hence proved .
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Problem :2

, 124224004 0
Show that lim | ————*™")

1
11— 00 n3 3

Solution :

We know that,

| RS i L T— +HZ=M

6
124224000004 02 . nn+1)(2n+1
lim 2 oy D)
n—oo n n—=x 6n
1 1
C 124224epn? . 13 (142)(245)
lim —————= lim -
n—»00 n n=w on
. 12+22+.“.--+ ﬂz K 1 1 1
im St 2 [(142) (2+2)]
n—oo n n—oo 6 " -
; 12422 4vsnse e 1 - 1 . 1
=00 n 6 n—=oco n n—oon
1242240000402 1
lim — - 1+D 2"‘0
lim —*- ; [(1+0)(2+0)]
1£+22++ ﬂz 1
lim ————=-[(1) (2
e (11C))
1- 124224000004 N2 _2
117 3 T
n=Co n 6
jjm A2t
Mn=—0o 'ﬂ.? _3

Hence proved .
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Problem :3

. n
Solution:
lim — =lim =
n-—00 ~.,|I'(ﬂz+1} n-— oo (1+%)
n
llm — 2 = =lim = -

N J(NZ+1) n->o0 J'(Hfr;

lim ——— =——
n—-00 J(N2+1) lim -
11—+ 00 1
{1+—§':‘1 )

n 1

lim - — = — -
2

1. n =1
n—h;ﬂm \/(H2+1)

Hence proved .

1

(« lim = = 0)

n—oco N2
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Problem :4
Show that if (a,,) = 0 and ( b, ) is bounded then ,(a,b,) — 0
Solution:

Since ( b, ) is bounded , there exists K>0 .Such that | b,, | < K for all n.

]ﬂnbnl zlﬂﬂllhnl

|anby| < Klay|
Now, let E>0 be given .

. ' £
Since (a,) — 0 there exists m& N . Such that |r.1,t|~:Efur alln=m

la,b,| < € foralln > m

[ﬂubn} —0
Problem :5
Show that lim i =)
n-=+co0 N
Solution:

|sinn|< 1 forall n.

s (sin n ) is a bounded sequence .
Also G) -0

We know that if (a,) = 0 and ( b,,) is bounded then ,(a,b,) = 0

s

51:1’1) -

N
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Problem 6:

Show thatlim,,_,,(a'/™ =1 where a>0 is any real number

Solution

Case 1:Let a=1.Then a/"=1 for eachn

Hence (a!/™)—1
Case 2: Let a>1. Then a'/™>1
a'/"=1+h, where h,>0

a=(1+h,)®

0<h, <22
LA

Hence lim,, . h,=0
(an) = (1+hy)-1

Case 3: Lee 0 <a<l. Then %}1
(Va)' - 1
(Gim) -1

(@™ -1
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Problem 7:
Show that lim,,_(n*'")=1

Solution
Clearly nﬁ =>1 for alln

Letnn >1+h,, Whereh,, = 0
Thenn= (1+h,)?®
=1+nh_+nc As+t......... +h!

>1/2n (n-1) hZ

Since
(h,,)—0
1

lim, ., nn=1+im,__ h,

() = (1+h,) = 1
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Problem 8:

. 1 1 1 1
+ ~ ~ =
Show it hm"_‘m(\a’(znzu} VanZ42 T u“zn1+n) 2
Solution
1 1 1
= — T — - _
T TInTEE vaREtE o aaven
Then we have the inequality

n n

<
J@nZ+n) 3 J@Zn%+1)

1
J(Z+1/n%)

<

1
e e
J@2+1/n) — @n

: 1 T 1 1
anllmﬂqm-‘m- hmﬂ-"m\/{yu"r} =

1

V2

lim,, e @y =
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Problem9:

Given an example to show that 1f (a,,) 1s a sequence
diverging to o and (b,,) is a sequence diverging to -co then (a,,+b,,)
need not be a divergent sequence

Solution
Let(a,) =nand ( b,)=(-n)
Clearly (a,,)— o and (b, )—-0

However (a,,+b,,) 1s the constant sequence 0,0, 0...... converges
to0
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